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Abstract

Multipoint flux approximation (MPFA) techniques are commonly applied for discretizing the porous media flow equa-
tions within the context of finite volume numerical procedures. Although these methods can be applied to heterogeneous,
anisotropic systems on generally unstructured grids, the inverse of the resulting linear operator can suffer from a loss of
monotonicity at high permeability anisotropy ratios, resulting in spurious oscillations of the pressure solution. The pur-
pose of this paper is to develop a method for optimizing unstructured grids in two and three dimensions such that the
monotonicity behavior of the MPFA technique is significantly improved. The method employs anisotropic triangulation
and can be readily combined with permeability upscaling procedures. Results are presented for a variety of examples and
the technique is shown to perform well on problems involving complex grid point distributions and heterogeneous perme-
ability fields with strong anisotropy ratios (of O(10 0)). Oscillation free pressure solutions are achieved in all cases consid-
ered, even for examples in which the original grid shows large oscillations.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Subsurface formations such as petroleum reservoirs and aquifers often display significant geological and
geometric complexity. These systems consist of anisotropic porous rock characterized by significant variation
in the magnitude of permeability. Accurate simulation of flow in these formations requires grids that are capa-
ble of resolving geological complexity coupled with discretization schemes suitable for unstructured grids with
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highly variable, anisotropic coefficients. A number of discretization techniques have been presented in the lit-
erature, e.g., multipoint flux approximation (MPFA) for logically structured grids [2,15,29,33], MPFA for
unstructured grids [3,14], k-orthogonal grids with two-point flux approximation [21], mimetic finite differences
[38,23,24] and mixed finite element approaches [5,12,43]. There are close relationships between many of these
techniques; for example, links between MPFA, mimetic finite differences and mixed finite elements are ana-
lyzed in [27].

Within the context of petroleum reservoir simulation, MPFA methods are commonly considered, as they
are control-volume based, locally conservative, introduce only one unknown per block, are applicable for mul-
tiphase flow problems, and allow the use of grids with general geometry. This paper focuses on MPFA for
unstructured grids, as introduced (independently) by Aavatsmark et al. [3,4] and Verma and Aziz [41]. It is
known, however, that MPFA may lead to severe oscillations of the pressure solution, caused by the non-
monotonicity of the inverse of the coefficient matrix, in cases with high degrees of permeability anisotropy.

In practical applications, permeability fields for flow simulation models are usually obtained by upscaling
(or coarsening) an underlying highly detailed geological description (this geological model is often generated
geostatistically). This upscaling procedure can lead to high degrees of anisotropy, as is readily apparent by
considering layered systems, which qualitatively characterize many geological settings. For such a system,
the effective permeability in the direction along the layers is given by the arithmetic average of the individual
layer permeabilities, while the effective permeability normal to the layers is given by the harmonic average. For
highly variable layer permeabilities, these two averages can differ by orders of magnitude. In the context of a
two-point discretization scheme, where the grid is aligned with the principal directions of permeability, this
anisotropy may not pose a problem. However, with unstructured grids that are not generally aligned with
the permeability tensor, MPFA discretizations can lead to oscillatory pressure solutions. In fact, this behavior
was observed in the context of upscaling and gridding for unstructured models in recent work by Prevost [36].
His observations provide a key motivation for this study.

The work presented in this paper addresses the problems caused by non-monotonicity from a grid optimi-
zation perspective that focuses on the link between MPFA discretization and grid geometry. Currently existing
approaches within an MPFA context modify the polygonal/polyhedral grid to enhance the diagonal domi-
nance [15] or symmetry [16] of the coefficient matrix. Here, we identify the inner angles of the triangulation
underlying the polygonal/polyhedral grid as the primary target for optimization, which leads to the develop-
ment of an anisotropic triangulation optimization algorithm. Though our emphasis in this study is on subsur-
face flow modeling, the methods developed here are also applicable for solutions of elliptic equations in other
applications.

Many of the applications of triangular mesh optimization arise in the context of dynamic adaptive gridding
for the finite element technique, where mesh adaptation is performed to control the solution error. The grid
optimization metrics strongly depend on the specific problem requirements, e.g., satisfying the Delaunay cri-
teria or directional metrics recovered from interpolating over the solution obtained from a mesh used for a
previous time step. In this context, work with a focus on directional metrics has been published by
[10,22,31,34]. From a strongly geometric perspective, anisotropic triangulations have been discussed by
[8,20,25]. The grid optimization technique developed in this paper exploits an approach based on topological
operators, similar to the edge swapping used by Freitag and Ollivier-Gooch [18]. Our approach will be shown
to be well suited for improving grids for control-volume discretization techniques, as it has the ability to han-
dle directional metrics which may exhibit strong variation and local randomness. A complication that arises
within the context of upscaling is that, as the grid is changed (based on the directional metrics), the permeabil-
ity tensor itself changes because it is computed from an underlying fine grid description. This effect is treated
within our grid optimization by ensuring that, upon convergence, consistency between the grid and the
upscaled permeability tensor is achieved.

This paper is organized as follows. The governing equations and the MPFA formulation are presented in
Section 2, where the criteria guaranteeing an M-matrix for the three-dimensional case are developed. Section 3
discusses the details of grid optimization techniques for unstructured grids in two and three dimensions.
Numerical examples demonstrating the convergence of MPFA on optimized grids and the elimination of spu-
rious oscillations in heterogeneous problems are presented in Section 4. Conclusions and future directions are
discussed in Section 5.
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2. Governing equations and multipoint flux approximation

In this section we will first formulate the equations governing the flow in porous media in a control-volume
framework. Next, we introduce the MPFA discretization technique for unstructured grids in two and three
dimensions. Finally, the monotonicity behavior of linear operators deriving from MPFA discretization on
unstructured grids will be discussed by focusing on the link between discretization and grid generation and
its impact on the M-matrix property of the resulting linear operator.

2.1. Control-volume formulation of flow in porous media

Modeling flow in subsurface formations requires the solution of conservation equations coupled with
Darcy’s law and descriptions of phase behavior. In the case of multiple components flowing in multiple
phases, the flow equations can be formulated in terms of a so-called pressure equation coupled with a sequence
of hyperbolic conservation laws. The form of this pressure equation and the complications introduced by
strong permeability anisotropy are similar to those of the pressure equation describing flow of only a single
phase. Thus, in this work we will study the single-phase pressure equation. In the limit of incompressible fluid
and rock, this equation is elliptic and is given by
r � ðkrpÞ ¼ Q; ð1Þ

where p denotes the pressure, Q represents sources and sinks and k is the permeability tensor of the form
kðxÞ ¼
kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

0
B@

1
CA. ð2Þ
The permeability tensor is in general a function of location x and is assumed to be symmetric and positive-
definite. In a control-volume formulation, the reservoir domain is subdivided into a number of finite sub-
volumes Xj and an approximate solution for the pressure is sought at the center of each of these control
volumes. Assuming that k is constant within Xj, the flux q across the control-volume boundary oX can be
expressed by integrating Eq. (1):
qj ¼ �
I

oXj

ðkrpÞ � n̂ dS; ð3Þ
where n̂ denotes the outward-pointing unit normal vector on the surface S of oX. This expression is valid be-
cause the Darcy velocity u is given by u = �k$p.

2.2. Principles of multipoint flux approximation in 2D and 3D

In this section we will briefly review the derivation of MPFA transmissibility coefficients in physical space.
A detailed description for two-dimensional polygonal grids was presented by Aavatsmark et al. [3]. An
approach for three-dimensional polyhedral grids was given by Verma and Aziz [41]. Our descriptions below
follow those given in these references.

The MPFA technique under discussion derives transmissibility coefficients for unstructured grids formed
from triangular meshes. These meshes are often Delaunay triangulations in two dimensions and Delaunay
tetrahedrizations in three dimensions (note that we will also refer to tetrahedrization using the more com-
mon term triangulation). The triangular meshes are also termed primal grids as they are the basis for the
generation of the dual polygonal or polyhedral control-volume grids that are actually used for flow sim-
ulation. Individual control volumes of the dual grid are commonly referred to as blocks. Block parameters
such as permeability are assumed to be constant within each control volume but may vary in an arbitrary
manner from block to block. In the standard case in two dimensions, the control-volume boundaries are
formed from the sub-interfaces generated by joining the barycenter b of each triangle with the mid-points
m of the three triangle edges (Fig. 1). Hence, a full block interface in two dimensions is composed of a
maximum of two sub-interfaces.
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Fig. 1. Two-dimensional control volume and interaction region showing vectors used for the MPFA discretization.
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In three dimensions, control-volume boundaries are formed from the barycenter of the tetrahedral mesh
elements bt, the barycenters of their faces bf and the mid-points m of their edges, as illustrated in Fig. 2. This
construction ensures that all sub-interfaces are planar [9]. As an edge in a three-dimensional triangulation can
be shared by an arbitrary number of tetrahedra, there is no restriction on the number of sub-interfaces con-
tributing to a full block interface. The dual grids resulting from these procedures are always non-overlapping.

This construction decomposes the boundary surface of a control volume into a set of discrete interfaces
between neighboring control volumes and hence the boundary flux given by Eq. (3) is decomposed into a series
of interface fluxes qi. MPFA seeks to approximate the fluxes across each interface i by a weighted combination
of multiple pressures
Fig. 2.
norma
qi �
X
j2C

tijpj; ð4Þ
where C denotes the set of points contributing to the flux, pj is the pressure at the center of grid block j, and the
weights tij are termed transmissibility coefficients, which account for the contribution from the pressure in
block j to the interface flux qi. To ensure qi = 0 when the pressure is constant, the coefficients must satisfy
X

j2C
tij ¼ 0. ð5Þ
The computation of the transmissibility coefficients for each sub-interface is based on the geometrical simpli-
ces of the primal grid. Each simplex forms a so-called interaction region, comprising three sub-cells and three
sub-interfaces in two dimensions and four sub-cells and six sub-interfaces in three dimensions. We first de-
scribe the determination of tij for the two-dimensional case.

Integration of Eq. (3) over a sub-interface yields
qik ¼ �nT
i kkrpk; ð6Þ
where $pk is the pressure gradient in sub-cell k and n is the interface normal vector of magnitude equal to the
interface area. For the derivation of tij, a linear variation of the pressure in each sub-cell of the interaction
3D interaction region with the points involved in the construction of the sub-cell around vertex 1 (left) and tetrahedron face
ls with numbering as used for the MPFA discretization.
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region is assumed; i.e., $pk is a constant that can be directly expressed as a linear combination of the pressures
at the interaction region vertices. For the case where k is homogeneous over the global domain, analytical
expressions for the transmissibility coefficients can be derived. Specifically, as given for the two-dimensional
case in [3],
tij ¼
1

2F
nT

i kvj; ð7Þ
where F is the area of the triangular interaction region and vj are the vectors perpendicular to the triangle edge
opposite to corner j, with their magnitudes equal to the edge length (see Fig. 1).

For heterogeneous media and general grid geometry, no simple analytical expressions for the transmissibil-
ity coefficients can be derived. If k is heterogeneous, the pressure gradient in each sub-cell must be defined
separately by assuming pressure continuity between neighboring sub-cells at the shared edge mid-points, as
illustrated in Fig. 3 for the two-dimensional case. This introduces one additional pressure unknown �p per
interaction region edge. Imposing flux continuity over each of the sub-interfaces in the interaction region pro-
vides sufficient conditions to eliminate the additional unknowns. Using Eq. (6) and the numbering introduced
in Fig. 1, flux continuity for each of the three sub-interfaces can be written as:
nT
1 k1rp1 ¼ nT

1 k2rp2;

nT
2 k2rp2 ¼ nT

2 k3rp3;

nT
3 k3rp3 ¼ nT

3 k1rp1.

ð8Þ
After substituting the expressions for the pressure gradient into Eq. (8) and introducing the vectors
p = [p1,p2,p3]T and �p ¼ ½�p1; �p2; �p3�T, the system of equations specifying flux continuity can be expressed in ma-
trix notation as E�pþ Fp ¼ G�pþHp, where E, F, G and H are 3 · 3 matrices depending on permeability and
geometry only. Now, defining the transmissibility matrix T (with coefficients tij) as the 3 · 3 matrix that relates
fluxes to pressures, we have
E�pþ Fp ¼ G�pþHp ¼ Tp; ð9Þ

from which T can be determined (see below).

The derivation of transmissibility coefficients in three dimensions is analogous to the two-dimensional case.
In the case of a homogeneous system, using the principles applied above, we obtain, in analogy to Eq. (7), the
following expression for the transmissibility coefficients:
tij ¼
1

3V
nT

i kvDj ; ð10Þ
where V is the tetrahedron volume and vDj is the outwards normal vector on the tetrahedron face Dj (this face
lies opposite to vertex j). The vector vDj is of magnitude equal to the area of Dj.

In the more general case of heterogeneous k, a linear pressure variation for each of the four sub-cells is
introduced, leading to six additional pressure unknowns, one for each interaction region edge. The linear pres-
sure variation in a sub-cell, for example that around vertex 1 in Fig. 2, can be expressed in terms of the pres-
sure at vertex 1 and the pressures at the mid-points (m12,m13,m14) of the three tetrahedron edges where
pressure continuity is enforced. As in the two-dimensional case, the additional pressure unknowns can be elim-
inated by enforcing flux continuity across the sub-interfaces,
p1

p1

p2

p2

p3

p3

p1
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p2

Fig. 3. Points involved in the definition of the pressure gradients in the sub-cells of a 2D interaction region.
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nT
12k1rp1 ¼ nT

12k2rp2;

nT
13k1rp1 ¼ nT

13k3rp3;

nT
14k1rp1 ¼ nT

14k4rp4;

nT
23k2rp2 ¼ nT

23k3rp3;

nT
24k2rp2 ¼ nT

24k4rp4;

nT
34k3rp3 ¼ nT

34k4rp4;

ð11Þ
where njk designates the normal on the sub-interface between vertices j and k pointing out of sub-cell j. For
example, referring to Fig. 2, n12 is the normal on the sub-interface between the sub-cells around vertices 1
and 2. This sub-interface is defined by the points m12, bf123, bt and bf124.

Inserting the expressions for the pressure gradient in each sub-cell into Eq. (11) leads to an equation system
of the same general form as Eq. (9). The vectors holding the pressure unknowns are now written as
p = [p1,p2,p3,p4]T and �p ¼ ½�p1; �p2; �p3; �p4; �p5; �p6�T, the matrices E and G are of size 6 · 6, and F, H and T are
of size 6 · 4.

After manipulating Eq. (9) to eliminate the sub-interface pressure unknowns �p, we have
T ¼ E � ðE�GÞ�1 � ðH� FÞ þ F. ð12Þ

This equation can be solved for all transmissibility coefficients in the interaction region and applies for both
the two- and three-dimensional cases. Each row of T consists of the transmissibility coefficients for one sub-
interface, so the sub-interface fluxes in the interaction region can be expressed by
q ¼ Tp; ð13Þ

where q is a 3 · 1 vector in two dimensions and a 4 · 1 vector in three dimensions holding the sub-interface
fluxes. Application of this procedure to the other interaction regions and assembly of all of the contributions
gives the full discretization of Eq. (1).

2.3. Monotonicity and the M-matrix property

Numerical schemes for elliptic problems of the form of Eq. (1) should ideally lead to solutions that are free
of nonphysical oscillations, i.e., the solutions should obey a discrete maximum principle. As discussed in, for
example, [1], this can be guaranteed if the inverse of the matrix A of the linear system Ap = Q that approx-
imates Eq. (1) satisfies the monotonicity inequality
A�1 P 0; ð14Þ

where 0 is the zero matrix; i.e., all entries in A�1 are non-negative.

A sufficient condition for Eq. (14) to hold is that A is an M-matrix, i.e., A is irreducible and the matrix
coefficients ai,j satisfy
ai;i > 0 8i;
ai;j 6 0; 8i; j; i 6¼ j;X

j

ai;j P 0 8i
ð15Þ
with strict inequality for at least one row [40]. As Eq. (14) is only a sufficient condition for monotonicity one
may still obtain a monotone inverse for a matrix that does not satisfy Eq. (15). For MPFA on structured uni-
form parallelogram grids in homogeneous media, criteria for the monotonicity property for non M-matrices
were recently developed in [32].

It has been observed by several authors, e.g., [3,15,16], that the transmissibility coefficients computed by an
MPFA discretization in two dimensions are not necessarily positive and will therefore not generally lead to an
M-matrix. For unstructured grids in the 2D homogeneous case the sign of the transmissibility coefficients can
be directly related to the internal angles of the triangle that forms the according interaction region. Eigestad
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et al. [16] analyzed the contribution of a single interaction region to the full matrix A by investigating the 3 · 3
matrix L arising locally for a single interaction region. Using the numbering of Fig. 1, off-diagonal element l2,1

can be written as
l2;1 ¼ t21 � t11 ¼
1

2F
nT

2 kv2 �
1

2F
nT

1 kv2 ¼
1

4F
vT

3 kv2. ð16Þ
If k is isotropic, it follows that the sign of l2,1 will depend on the inner product vT
3 v2. This product will only be

non-positive if the angle between v3 and v2 is greater than or equal to p/2, which is equivalent to the inner
angle around vertex 1 being less than or equal to p/2. This reasoning can be extended to the general homo-
geneous case by investigating the inner product in a computational space that reduces the permeability tensor
to the identity matrix. If any inner angle of the triangle in computational space exceeds p/2 there will be a
positive off-diagonal element in the local matrix. On the level of the full matrix A, coefficients include contri-
butions of the two sub-interfaces forming a full block interface. This relaxes the angle criteria and, as a con-
sequence, the sum of the two angles opposite the shared edge being less than or equal to p becomes a sufficient
condition for a non-positive off-diagonal element [4]. This mesh property is satisfied by a two-dimensional
Delaunay triangulation. The same results have been reported for the control-volume finite element technique
by Forsyth [17].

In three dimensions it can be shown via the counter-example presented in [30] that even in the homoge-
neous, isotropic case a Delaunay triangulation does not guarantee an M-matrix. The conditions that guaran-
tee an M-matrix for the general homogeneous case will be derived in the following. Again, we proceed by
analyzing the contributions of a single interaction region to the full matrix A. We consider the 4 · 4
matrix L arising for the local interaction region. Using the vertex numbering and the sub-interface normal
indexing convention introduced in Fig. 4, the following expression for off-diagonal element l1,2 is obtained
for isotropic k:
l1;2 ¼ t12 þ t22 þ t32 ¼
1

3V
kvD2
ðn1 þ n2 þ n3Þ. ð17Þ
As a consequence of the divergence theorem, the sum over all interface normals of a polyhedron yields zero if
each normal has a magnitude equal to the area of its associated interface. Furthermore, the barycenter based
grid construction ensures that the magnitude of an interface normal on a sub-cell face that is part of a tetra-
hedron face is exactly one third of the magnitude of the normal on the full tetrahedron face (see Fig. 4). Hence,
the following relations apply to the tetrahedron interface normals
vD1
þ vD2

þ vD3
þ vD4

¼ 0 ð18Þ

and to the sub-cell around interaction region (vertex) 1
n1 þ n2 þ n3 þ
1

3
ðvD2
þ vD3

þ vD4
Þ ¼ 0. ð19Þ
Combining Eqs. (17)–(19) leads to the following expression for the off-diagonal element l1,2
Fig. 4. Interface normals of the sub-cell around vertex 1 in a 3D interaction region.
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l1;2 ¼
1

9V
kvD2

vD1
. ð20Þ
The sign of l1,2 depends on the inner product vD2
vD1

, which will only be negative if the dihedral angle between
the tetrahedron faces D2 and D1 is smaller than p/2. This extends the two-dimensional angle criterion to three
dimensions and indicates that each interaction region will only lead to negative contributions to the off-diag-
onal elements of the full matrix if all of its dihedral angles are smaller than p/2. This criterion can also be
applied to a general homogeneous k if the vector product is evaluated in a computational space that maps
the permeability tensor to the identity matrix. In general, a Delaunay triangulation of an arbitrary set of
vertices does not satisfy this criterion [7] and therefore is not a sufficient condition for an M-matrix.

Assuming that k is isotropic and using the following expression for the tetrahedron volume
V ¼ 2

3eij
ADi ADj sinðhijÞ; ð21Þ
where ADi and ADj are the areas of the tetrahedron faces Di and Dj, eij is the length of the tetrahedron edge
shared by faces Di and Dj and hij is the dihedral angle between tetrahedron faces Di and Dj, and expressing
the dot product between the two outwards normals as
vDi vDj ¼ �ADi ADj cosðhijÞ; ð22Þ
Eq. (20) can be rewritten as follows
l1;2 ¼ �
1

6
e12 cotðhijÞ. ð23Þ
Because a full block interface may be composed of arbitrarily many sub-interfaces, a given off-diagonal ele-
ment of the full matrix combines contributions from multiple interaction regions. Clearly, the full matrix
can still be an M-matrix in cases where the dihedral angle criterion is locally violated, as one interaction region
may compensate for a positive contribution from another. Any off-diagonal element ai,j of the full flow matrix
can be expressed by summing over the contributions of all interaction regions written in the form of Eq. (23).
The summation leads to the following generalized expression for an off-diagonal element in the full flow
matrix
ai;j ¼ �
1

6

X
T�ij

ðeij cotðhijÞÞT ; ð24Þ
where
P

T�ij indicates a summation over all tetrahedra T that share edge ij and (Æ)T means that the expression
is evaluated for tetrahedron T.

Eq. (24) effectively relaxes the dihedral angle criterion, as it is now sufficient that the sum of the contribu-
tions to an off-diagonal element remains negative, rather than each contribution itself. Eqs. (23) and (24) also
hold for homogeneous cases with anisotropic permeability if they are evaluated in a computational space
which reduces the permeability tensor to the identity matrix.

It is important to note that, in previous work, expressions identical to Eqs. (23) and (24) were derived by Xu
and Zikatanov [44] for the Galerkin method with linear basis functions. Our derivation above shows that the
discrete equations are identical for the control-volume scheme considered here. This agreement will also hold
for anisotropic cases if k is constant. This correspondence would be expected, since the two methods are
known to give identical discretizations on two-dimensional triangular grids (e.g., [19]), but we are not aware
of the previous demonstration of this for three-dimensional tetrahedral grids. For heterogeneous cases, with k

defined on the control volumes (in either two or three dimensions), these correspondences no longer hold.
Another method related to our control-volume scheme is the orthogonal subdomain collocation scheme

analyzed in [37]. With this method, the control-volume grid is constructed using the circumcenters of the
tetrahedra rather than their barycenters. For a Delaunay grid and isotropic permeability, this approach guar-
antees an M-matrix. In the context of petroleum reservoir simulation, this technique is similar to the use of
Voronoi (or PEBI; i.e., perpendicular bisection) grids for isotropic k and k-orthogonal Voronoi (or k-PEBI)
grids for anisotropic k, as suggested by Heinemann et al. [21]. Voronoi or k-orthogonal Voronoi grids (as
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appropriate) yield two-point flux approximations and hence guarantee an M-matrix. For anisotropic perme-
ability, however, k-orthogonal Voronoi grids can only be formed for systems with relatively low degrees of
anisotropy. Limits for the anisotropy ratio were investigated in [4].
3. Grid optimization

In this section we introduce grid optimization techniques in two and three dimensions with the objective of
improving the quality of the primal grid to better accommodate the multipoint discretization stencil.

The criteria described in Section 2.3 identify the internal angles of the geometric simplices that form the
primal grid as critical parameters that impact the M-matrix property. Hence, the focus of this work is on
the underlying triangulation rather than the associated dual polygonal/polyhedral grid. In the absence of a
triangulation algorithm that is able to honor discrete directional metrics and at the same time account for
angular restrictions, we propose a posteriori grid optimization techniques that operate on initial two- and
three-dimensional triangular meshes. The resulting techniques can be classified as anisotropic triangulation
optimization approaches.

Anisotropic triangular mesh optimization is governed by the objective of constructing a triangular mesh
that locally conforms to size and direction constraints. These constraints are specified as metrics at each point
in space through symmetric, positive-definite tensors that depend on the problem requirements and on the par-
ticular notion of mesh quality. For the purpose of mesh optimization, this work relies on the application of
topological operators, e.g., [20], as powerful but inexpensive basic building blocks of grid optimization algo-
rithms. These act only on a subset of an initial triangulation by locally modifying the mesh connectivity. Gen-
erally, the use of topological operators arises from the observation that there exist repeated topological
patterns in a grid that are potential candidates for optimization.

The algorithms described in the following sections do not modify the original set of vertices; i.e., there is no
shifting, adding or deleting of nodes. This is not a limitation of the technique itself, but rather an algorithm
design decision based on the assumption that the grid node distribution has been obtained from some prepro-
cessing step, e.g., flow-based gridding. Adding nodes locally will improve the quality of the grid and, in the
three-dimensional case, will act to eliminate non-acute tetrahedra. The addition of points will best be accom-
plished by considering both grid issues and other data (approximate flow information, geological features, per-
meability connectivity) in combination. The algorithms described here can be used in conjunction with meshes
that resolve internal features such as faults (see [41] for an illustration of fault resolution with control-volume
grids). This is accomplished by restricting the optimization to edges and faces of the triangular elements that
are not part of these internal boundaries.
3.1. Permeability and geometry

To account for tensorial permeability in grid optimization, a direct link between geometry and permeability
must be established. Following Bear [6], it can be shown that the geometric interpretation of a permeability
tensor is an ellipse in R2 and an ellipsoid in R3. The following discussion will only refer to the three-dimen-
sional case, with the two-dimensional case as a subset.

A general permeability ellipsoid is given by
g2

k1

þ m2

k2

þ n2

k3

¼ 1; ð25Þ
where g, m and n are the independent coordinate variables in the axis directions of a vector space spanned by
the eigenvectors e1, e2 and e3 of the permeability tensor, and k1, k2, k3 are the respective eigenvalues. The
notions of permeability and spatial distance become equivalent in a computational space which reduces the
permeability ellipsoid to a sphere. The relationship between physical and computational space is given by
x0 ¼Mx; ð26Þ



346 M.J. Mlacnik, L.J. Durlofsky / Journal of Computational Physics 216 (2006) 337–361
where x 0 and x denote the coordinate vector in computational and physical space, respectively. The transfor-
mation matrix M maps the permeability ellipsoid to a sphere through a combined rotation and stretching
operation and is defined as
M ¼ ðR�1
ffiffiffiffiffi
S
p

RÞ�1
; ð27Þ
where the columns of the matrix R are composed of the eigenvectors of the permeability tensor in x–y–z space,
accounting for the rotational part of the transformation
R ¼ ðe1ðx; y; zÞ; e2ðx; y; zÞ; e3ðx; y; zÞÞ. ð28Þ

S is a diagonal matrix with the eigenvalues as elements
S ¼ diagðk1; k2; k3Þ; ð29Þ

accounting for the stretching operation.
3.2. Grid optimization in two dimensions

In two dimensions, Delaunay triangulations are commonly used for generating the initial primal grid, as effi-
cient algorithms for their construction are readily available and Delaunay triangulations have several favorable
properties [13]. For example, Delaunay triangulations maximize the minimum inner angle of the triangular
elements (MaxMin angle property).

To render a triangulation more suitable for the MPFA discretization, it should account for directional met-
rics defined by the local permeability tensor. In the simplest case of globally homogeneous k, the directional
metric is constant throughout the domain. As proposed in [4], an optimal grid can be constructed in this case
directly from a grid node distribution that has been mapped into a computational space. The primal grid
resulting from this triangulation in computational space is optimal in a Delaunay sense and therefore satisfies
the angle criterion that guarantees an M-matrix.

Rather than mapping grid points into computational space, an initial grid generated in physical space can be
optimized through purely local manipulations of its topology. This local optimization is based on an edge swap-
ping technique, introduced by Lawson [28], which exploits the fact that in two dimensions there are exactly two
ways in which four non-degenerate vertices can be triangulated. Without accounting for directional metrics,
any arbitrary triangulation of a given set of n points can be transformed into a Delaunay triangulation by loop-
ing over all edges that are shared by two triangles which form a convex quadrilateral. Each of these configu-
rations can be optimized with respect to the MaxMin angle property by swapping the shared edge if the
minimum internal angle of the two triangles is thus maximized. Regardless of the initial mesh, the algorithm
converges to a global optimum, i.e., the Delaunay triangulation of the point set, with complexity O(n2).

This local grid optimization operation can be achieved by employing a single topological operator. The
operator used for optimizing the MaxMin angle property of triangulations in R2 acts on a convex quadrilat-
eral formed by two triangles sharing an edge and returns a topology representing two triangles. This operation
will therefore be denoted by Tr2!2, following the nomenclature used by, e.g., [20]. To account for an addi-
tional directional metric such as full-tensor permeability, the MaxMin angle property must be evaluated in
computational space. The required coordinate transformation follows Eq. (26). Fig. 5 illustrates the mechanics
of the Tr2!2 operator.

The application of the Tr2!2 operator can be extended to heterogeneous media. Although applied here for
general cases, this extension is most suitable for systems in which the eigenvectors (principal directions) of
permeability vary relatively slowly (the magnitudes of k1 and k2 can, however, vary abruptly). We note that
relatively slow variation in the eigenvectors is frequently observed in upscaled models of geological systems.
This is because, although the principal values of upscaled permeability often display large local variations in
magnitude, the principal directions are impacted by large-scale geologic phenomena (such as flooding events)
that display consistent patterns and trends.

The local orientation of the permeability tensor can be captured by an average Ækæ of the tensors associated
with the four vertices. This tensor can then be used as the basis of a coordinate transformation. In this work
we apply a simple arithmetic average, i.e.,



Fig. 5. Illustration of the mechanics of the Tr2!2 operator. (a) shows the original configuration in physical space, (b) the two alternative
triangulations in computational space, and (c) the updated configuration in physical space.

Fig. 6.
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hki ¼ 1

4

X4

i¼1

ki; ð30Þ
as it maintains symmetry and positive-definiteness of the resulting tensor. In regions with local randomness in
permeability orientation, little or no grid optimization will be introduced, as illustrated in Fig. 6. We note that
other types of local permeability averages could also be applied, though we have found that the simple arith-
metic average performs well for the cases considered here.

The resulting grid optimization algorithm starts from an initial triangulation of the grid node distribution.
Each iteration cycle consists of a loop over all internal edges (i.e., edges shared by two triangles) and repeat-
edly applies the topological operator Tr2!2 to each of these configurations. The operator evaluates the Max-
Min angle property in computational space and, if necessary, updates the topology of the shell in physical
space by flipping the central edge. The process is repeated until convergence is achieved. For homogeneous
media the method will converge to the grid obtained from directly constructing the Delaunay triangulation
in computational space. For cases with variable anisotropy, there is no guarantee of convergence to a global
optimum, but the improvement in grid quality was almost always sufficient to overcome monotonicity prob-
lems for the anisotropy ratios considered in this paper. It is expected that the addition and/or movement of
points (which were not investigated here) will act to further improve the grid. Note that the initial triangula-
tion does not need to be Delaunay, but for problems with moderate anisotropy ratios Delaunay meshes are a
good starting point and reduce the number of optimization iterations.

3.3. Grid optimization in three dimensions

In three dimensions the relaxed angle criterion given by Eq. (24), which guarantees an M-matrix, appears to
be the obvious choice for an optimization metric. This criterion does not however measure the quality of a
Arithmetic averaging of four tensors. The tensors are represented by solid ellipses, ellipses with dashed lines show the arithmetic
e. If tensors are well aligned their average reproduces the trend in orientation and axis ratio (left figure), but with high degrees of
ility the average ellipse relaxes towards a circle (right figure).
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tetrahedron itself, but rather the quality associated with a tetrahedron edge. This makes it difficult to directly
apply Eq. (24) in the commonly used triangulation optimization algorithms which aim at improving tetrahe-
dron quality.

One alternative would be to revert to the more restrictive criterion that requires tetrahedrizations with no
dihedral angle larger than p/2. This criterion is straightforward to implement in the context of topological
operators, but is limited by the severe restrictions it imposes on the primal grid. In general, a Delaunay tet-
rahedrization of an arbitrary set of vertices does not satisfy this criterion and, moreover, a tetrahedrization
in R3 satisfying the non-obtuse dihedral angle property may not necessarily be Delaunay [7]. Improving the
grid quality measured in terms of dihedral angles is an active research area in the field of computational geom-
etry. Along these lines, however, Bern et al. [7] showed that the dihedral angle criterion can only be strictly
enforced by adding Steiner points. As indicated above, however, in our algorithm we do not add points to
the original set of vertices. Thus we cannot expect to satisfy this angle criterion.

From the above discussion, it is clear that we cannot satisfy Eq. (24) directly in our optimization or guar-
antee reduction of the maximum dihedral angle to a value less than p/2. However, from Eq. (24) it is apparent
that angles that approach p will lead to ai,j that are large and positive. The existence of such ai,j means that the
resulting A matrix is far from satisfying the M-matrix criteria (see Eq. (15)). The degree of violation of the M-
matrix criteria will be reduced if we apply an optimization scheme to minimize the largest dihedral angles
appearing in the model (with hij evaluated in computational space). Although this will not in general lead
to an M-matrix, the results obtained from our optimized grids do offer clear improvement in terms of the qual-
ity of the solution. This is consistent with the findings of Petrovskaya [35], who showed that the performance
of his finite volume scheme could be understood to some extent in terms of simple measures of non-positivity
(non-negativity in our case) of the matrix coefficients.

We now discuss the reconnection operations (referred to here as topological operators) employed to min-
imize the maximum dihedral angles in each shell. Lawson [28] showed that the grid optimization through edge
swapping can be extended from R2 to R3, although this extension is not straightforward. In three dimensions
additional complications arise through the correspondence of edges and faces in swapping operations. This is
illustrated in Fig. 7, which shows the two topologically valid tetrahedrizations of five non-degenerate vertices,
i.e., either two tetrahedra sharing one face, or three tetrahedra sharing one edge, can be formed. Swapping the
common face of the two-tetrahedra configuration will not generate a new face, but rather leads to a new edge
that is shared by three tetrahedra. This operation can be encapsulated by the topological operator Tr2!3,
which takes a two tetrahedra configuration (left triangulation in Fig. 7) as input and returns a three tetrahedra
configuration (right triangulation in Fig. 7). Tr2!3 cannot handle the reverse operation, as it only acts on two
tetrahedra configurations. Therefore, an additional operator needs to be defined that transforms a three tet-
rahedra configuration with a common edge into a two tetrahedra configuration with a common face and
which will hence be denoted by Tr3!2.

In this work we use a topological operator technique similar to the edge swapping initially presented by de
l’Isle and George [25] and adapted by Freitag and Ollivier-Gooch [18]. However, we extend these ideas to
account for strongly directional metrics. In our procedure, a topological operator stores all alternative topol-
Fig. 7. The two topologically valid triangulations of five points in 3D. The left figure shows two tetrahedra sharing one face, while the
right figure shows three tetrahedra sharing one edge in an exploded view. This illustrates Tr2!3 (left to right transform) and Tr3!2 (right to
left transform).
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ogies. Among these, the algorithm chooses the best solution according to the optimization metric(s) evaluated
in computational space. This avoids the potentially expensive re-triangulation of a shell (i.e., the polyhedron
formed by the tetrahedra sharing an edge) and the problem of developing a triangulation algorithm that can
account for criteria other than the Delaunay property. Other mesh optimization techniques have been
reported in the literature, e.g., [26] or [39], and could also be applied. The topological operator approach
employed here proved to be very effective for the cases investigated while remaining simple and robust.

Following the discussion presented in Section 2.3, the quality of a mesh in an anisotropic medium should be
evaluated in a computational space that maps the permeability ellipsoid to a sphere. The according coordinate
transformation was also discussed in Section 3.1. If the medium is heterogeneous, as in the two-dimensional
case the coordinate transformation is based on a local average of the permeability tensors
hki ¼ 1

nshell

Xnshell

i¼1

ki; ð31Þ
where nshell is the number of vertices involved in the shell.
A rigorous application of topological operators for grid optimization, where each operator can only

account for a specific number of tetrahedra sharing an edge, requires the definition of one operator for each
possible configuration. The number of alternative tetrahedrizations increases rapidly with the number of ver-
tices involved in the shell following the Catalan number [20], but de l’Isle and George found that for practical
purposes it is sufficient to account for a maximum of nine tetrahedra sharing an edge. Freitag and Gooch [18]
further decreased the number of topological operators, reporting good results for an approach based on oper-
ators that account for a maximum of seven tetrahedra sharing an edge. As the algorithm described in this
paper is especially concerned with optimization in the presence of anisotropy affected by a degree of random-
ness, it is critical to preserve the representative character of the local average tensor, which is increasingly lost
with increasing numbers of vertices.

For our application, it proved to be sufficient to introduce only two operators in addition to Tr2!3 and
Tr3!2 defined above. These additional operators are designated Tr4!4 and Tr5!6. Tr4!4 is locally applied
to entities in the full triangulation where four tetrahedra share an edge. It stores the two alternative tri-
angulations (again consisting of four tetrahedra), evaluates the original and alternative configurations in a
computational space defined by the optimization metric, and returns the optimum configuration, i.e., it
either leaves the original configuration unchanged or updates the mesh locally, using one of the stored
alternatives. Tr5!6 acts on configurations where five tetrahedra share an edge. The mechanics of this oper-
ator are similar to Tr4!4, but Tr5!6 needs to store and evaluate five alternative configurations consisting
of six tetrahedra.

The alternative tetrahedrizations of a shell are sufficiently characterized through the possible triangulations
of the equatorial polygon, which is the polygon that is formed by the vertices that are not part of the shared
edge. The triangulation of the equatorial polygon, together with the two points of the central edge in the ori-
ginal configuration, define the tetrahedra that form the alternative configurations. To visualize the alternative
tetrahedrizations of the operators Tr4!4 and Tr5!6, the triangulations of the according equatorial polygons
are shown in Figs. 8 and 9. See [20] for further details on these topological operators.

Using topological operators, several different mesh optimization strategies can be envisioned [20]. Here we
minimize the largest dihedral angle in all tetrahedra by applying topological operators to appropriate target
entities (faces and edges) in the mesh. For this purpose a two step algorithm proved to be most effective. In the
first step, the algorithm optimizes the grid with respect to the Delaunay property. That is, the topological
operators choose the optimal configuration based on the Delaunay property evaluated in computational
space. In the second step the grid is optimized with respect to the dihedral angles, again in computational
space. In this step each topological operator returns the optimum configuration with respect to the dihedral
angles, i.e., the configuration that minimizes the largest dihedral angle in all tetrahedra involved in a shell.

Both steps of the optimization are based on the same iterative scheme. Regardless of the optimization met-
ric, a loop of the scheme can be summarized as follows. Note that the optimization defined here is for specified
permeability tensors. Modifications required to incorporate an upscaling step (in which the tensors depend on
the mesh) will be described below.



Fig. 8. Configuration in which four tetrahedra share an edge and the two alternative tetrahedrizations. The alternative triangulations of
the equatorial polygon 1234 are shown below the corresponding tetrahedrizations. This represents the tetrahedrizations involved in Tr4!4.

Fig. 9. Alternative triangulations of the equatorial polygon for a configuration where five tetrahedra share an edge. Application of Tr5!6

eliminates the shared edge (original configuration with shared edge not shown).
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� Generate a list of all faces in the grid.
� Loop over the face list and apply the topological operator Tr2!3 to each of the tetrahedra faces. Tr2!3

returns the optimal configuration with respect to the optimization metric and updates the mesh topology.
If a face is part of a boundary (internal or external), it will not be optimized.
� Generate a list of all edges in the grid.
� Loop over all edges in the edge list and apply the topological operators Tr3!2, Tr4!4 and Tr5!6 to each

edge that is shared by either 3, 4 or 5 tetrahedra. The operators return the optimal configuration with
respect to the optimization metric and update the mesh topology. If an edge is part of a boundary, it will
not be optimized.
� If the number of topological changes drops below a prescribed minimum, stop the loop; otherwise start a

new iteration cycle.

4. Numerical results

The examples presented in this section involve solutions of the incompressible, single-phase flow problem
on original and optimized grids. Sections 4.1 and 4.2 investigate the convergence of MPFA on optimized grids
for homogeneous k with strong anisotropy ratios. Section 4.3 shows the application of the technique to a
heterogeneous permeability field with a complex global structure but a high degree of local randomization.
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Section 4.4 illustrates the coupling of grid generation and upscaling. In Section 4.5 the effect of grid optimi-
zation on monotonicity is investigated for a three-dimensional example.

For the convergence studies, convergence rates are estimated for the maximum norm
Lmax ¼ kP i � pikmax ð32Þ

and the mean-square norm
L2 ¼
Xn

i¼1

ðP i � piÞ
2Ai

" #1=2

ð33Þ
where Pi is the exact solution, pi is the numerical solution at the location of vertex i, and Ai is the area of the
control volume associated with vertex i. In the examples the errors are computed for successively refined grids
and the convergence rates qmax and q2 are estimated from the last two refinement steps (last three points).

To investigate the performance of the technique with respect to monotonicity, the inverse coefficient matri-
ces are checked for negative entries. For the three-dimensional case, where monotonicity problems cannot be
resolved through pure grid optimization, the solution is checked for the appearance of local minima or max-
ima. The results obtained from optimized grids are compared to results obtained from the original grids
formed by Delaunay triangulation in physical space.

The following examples are based on strong permeability anisotropy ratios which will be quantified by the
relation k1/k2, where k1 and k2 are the permeability values in the vector space defined by the eigenvectors of
the tensor (i.e., the principal values of k). In the unrotated orientation, k1 aligns with the x-axis direction and
k2 with the y-axis.

4.1. Homogeneous k with Dirichlet boundary conditions

This example is a generalization of a problem presented by Crumpton et al. [11]. A constant, symmetric
permeability tensor
k ¼
kxx kxy

kxy kyy

� �
; ð34Þ
is defined on a unit square and the problem is solved subject to Dirichlet boundary conditions consistent with
the analytical solution given by
p ¼ exy . ð35Þ

For a general symmetric tensor the corresponding right-hand side (source term) of the pressure equation is
given by
Qðx; yÞ ¼ exy ½kyyx2 þ 2kxyð1þ xyÞ þ kxxy2�. ð36Þ

The numerical tests use a full permeability tensor with an anisotropy ratio of k1/k2 = 100/1 rotated 60� in the
clockwise direction. The grids are based on regular N · N Cartesian grid point distributions. Results for grids
based on Delaunay and optimized triangulations are presented in Table 1. The table provides the number of
points in one coordinate direction N, the square root of the mean control-volume area ÆAæ, results for the max-
imum and least-square norms, corresponding convergence rates based on the last two refinements, and results
for the checks of A�1 P 0.

For both grid types the maximum and least-square norms indicate approximately second order conver-
gence. Although the results for the original grids are obtained from non-monotone matrices, the correspond-
ing pressure solutions do not show local minima or maxima. Note that the optimized grids in all cases lead to
monotone A�1. For a given N, both errors are larger using optimized grids. Investigation of the error map
shows that the maximum errors in the optimized grid occur at the transition from boundary blocks (unaffected
by the grid optimization) to the stretched blocks inside the domain. These larger errors may be caused by the
abrupt transitions or by the handling of boundary conditions. Although a more detailed analysis would be
required to clarify this issue, we expect that the errors with the optimized grids would be significantly reduced
in this region if we forced smoother transitions.



Table 1
Convergence rates for original and optimized grids (see Section 4.1)

Grid N
ffiffiffiffiffiffiffi
hAi

p
Lmax L2 qmax q2 A�1 monotone

Original 20 0.050 6.35E � 04 3.21E � 04 No
30 0.033 2.78E � 04 1.39E � 04 No
40 0.025 1.55E � 04 7.74E � 05 No
50 0.020 0.99E � 04 4.92E � 05 No
60 0.017 0.68E � 04 3.40E � 05 2.01 2.02 No

Optimized 20 0.050 1.80E � 03 4.09E � 04 Yes
30 0.033 8.02E � 04 1.72E � 04 Yes
40 0.025 4.56E � 04 9.40E � 05 Yes
50 0.020 2.94E � 04 5.92E � 05 Yes
60 0.017 2.05E � 04 4.07E � 05 1.97 2.06 Yes
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4.2. Homogeneous k with localized source term

The problem domain is formed by a regular dodecagon inscribed into the unit square. A source injecting at
a constant rate is located at the center of the domain and zero Dirichlet boundary conditions are imposed on
the domain boundary. Due to the lack of a simple analytical solution that accounts for permeability anisot-
ropy, a surrogate analytical solution is generated through a fine grid solution on a 401 · 401 grid defined over
the unit square (with blocks outside the dodecagon set to be inactive). The value of the ‘‘true’’ solution on the
coarse grid is obtained by bilinearly interpolating the values at the fine grid points that surround a particular
coarse grid vertex.

The advantage of this model set-up lies in its radial symmetry. The surrogate solution on the fine grid can
be generated using a diagonal tensor aligned with the x–y coordinate axes, which allows the use of a two-point
discretization. Any rotation of this tensor in 30� increments, such that the full-tensor eigenvectors align with
diagonals of the dodecagon, can be used for the coarse grid coefficients. The coarse grid solution can then be
brought into alignment with the surrogate analytical solution through a simple rotation operation.

For the numerical testing, a series of subsequently refined grids were generated with the number of grid
vertices n ranging from 317 to 8615. The grid node distributions at subsequent refinement levels include the
grid node distributions of previous levels and were generated such that each triangle of the Delaunay triangu-
lation covered approximately the same area, leading to generally unstructured grids. The problem involves a
permeability tensor with an anisotropy ratio of k1/k2 = 100/1 rotated 30� in the counterclockwise direction.
An optimized grid with 317 vertices and the reference fine grid solution (solved on a 401 · 401 grid oriented
with the principal directions of k) are shown in Fig. 10. In order to avoid spurious effects due to the source
term (which leads to the solution being unbounded in Lmax), the convergence rates were estimated using only
vertices located outside a circular area with radius 0.1 around the source. Convergence results are summarized
in Table 2 and Fig. 11. Note that the convergence is affected by a certain degree of randomness, which can be
attributed to the point insertion process at subsequent refinement levels.

The results on the original grids are obtained from non-monotone matrices, and oscillations appear in the
areas where the pressure surface flattens out towards 0. The L2 errors are significantly lower and the convergence
rate higher for the optimized grids than for the original grids. This may be a consequence of non-monotonicity in
the solutions on the original grids. The Lmax error for both cases shows a low rate of convergence, but the rate for
the optimized grids is higher. The maximum error consistently occurs just outside the circular cutout around the
source, so these results are likely sensitive to the gridding in that region.
4.3. Heterogeneous permeability field

The domain of this example is the unit square with pressure conditions imposed at the lower left and upper
right corner and no-flow conditions imposed elsewhere along the domain boundary. The grid is based on a
16 · 16 Cartesian point distribution with an initial node spacing of Dx = Dy = 1/15. The location of each node
i away from the boundaries is randomly perturbed by�Dx 6 rx,i 6 Dx in the x-direction and by�Dy 6 ry,i 6 Dy
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Fig. 10. Optimized dual grid for Section 4.2 with 317 grid points and pressure contours from surrogate analytical solution.

Table 2
Convergence rates for original and optimized grids (see Section 4.2)

Grid n
ffiffiffiffiffiffiffi
hAi

p
Lmax L2 qmax q2 A�1 monotone

Original 317 0.049 3.55 0.35 No
627 0.035 2.38 0.24 No

1997 0.019 2.43 0.18 No
4077 0.014 1.71 0.11 No
8615 0.0093 1.82 0.094 0.39 0.89 No

Optimized 317 0.049 0.32 0.037 Yes
627 0.035 0.21 0.017 Yes

1997 0.019 0.14 0.0089 Yes
4077 0.014 0.093 0.0054 Yes
8615 0.0093 0.074 0.0043 0.82 0.99 Yes
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in the y-direction. The permeability field is defined in any control volume by a tensor with an anisotropy ratio of
(k1 + rk)/k2 where k1 = 1, k2 = 80 and rk is a randomization term such that �20 6 rk,i 6 20. Each tensor is
rotated in the counterclockwise direction by rotation angle ai which is given by the bilinear function
ai ¼ 60þ 100xi � 10yi þ 30xiyi þ ra;i; ð37Þ
where ra,i is an angle randomization term such that �30 6 ra,i 6 30. The resulting tensor field is shown in
Fig. 12. A global trend in the orientation can be identified, but a high degree of local randomization also
exists.

The inverse of the matrix resulting from the original grid is non-monotone, leading to the severe oscillations
in the pressure solution shown in Fig. 13 (lower left). The inverse matrix for the optimized problem is mono-
tone, and the resulting pressure field is free of spurious oscillations (see Fig. 13, lower right). This example
vividly illustrates both the problems that can result from the use of simple gridding procedures and the
improvement offered by our grid optimization technique.
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Fig. 11. Convergence of the maximum (top) and L2 (bottom) errors for Section 4.2.
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4.4. Coupling gridding and upscaling

In subsurface flow applications, permeability tensors are not defined by a continuous function. Rather, they
result from a numerical procedure that computes each tensor from a high resolution geological model, which
is too fine to be used directly for flow simulation. Numerical upscaling techniques proceed by solving local
problems over fine scale regions corresponding to control volumes of the flow simulation grid (in some cases
bordering regions are also included in these calculations) in order to determine the local permeability tensor. A
variety of techniques are available in the literature; here we apply an approach using periodic boundary
conditions which was adapted for use with unstructured grids. The particular challenge for the optimization
arises from the fact that the tensor is a function of the control-volume geometry, which changes during the
grid optimization procedure, requiring an iterative process between upscaling and grid optimization. To keep
computational costs low, we compute the upscaled k based on the initial grid, run the grid optimization until
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Fig. 12. Permeability tensor field for Section 4.3. The ellipses indicate the orientation of the permeability tensor at each point. The average
anisotropy ratio is 80.

M.J. Mlacnik, L.J. Durlofsky / Journal of Computational Physics 216 (2006) 337–361 355
convergence, and then recompute the permeability tensors using the ‘‘optimized’’ grid. The procedure is
repeated until consistency between the grid and the permeability tensors is achieved.

We illustrate this procedure with an example modified after Wen et al. [42]. This case involves a two-dimen-
sional permeability field with oriented layers. The fine grid is of dimensions 100 · 100 and displays layering
and orientation of the principal axes of permeability at an angle of 30� relative to the x-axis. The permeability
in the x–y coordinate system is therefore a full tensor quantity, with an anisotropy ratio of k1/k2 = 30 (this
level of anisotropy is a factor of three greater than that used in [42]; the permeability fields are otherwise iden-
tical). The coarse grid is based on an a priori estimate of the flow field (see [42] for a discussion of flow-based
gridding) and consists of approximately 230 control volumes. The fine scale permeability field and the opti-
mized (flow-based) dual grid are shown in Fig. 14. The optimization procedure starts from an initial point dis-
tribution (determined from the a priori flow estimate) and repeatedly performs grid optimization and
upscaling. Five full optimization-upscaling loops were required for convergence, which was achieved when
the number of edge swaps in the optimization procedure dropped below a prescribed minimum (20 for this
example). To minimize the computational cost, the algorithm does not necessarily need to run until full con-
vergence; for practical purposes it will often suffice to perform only a single optimization cycle.

For this problem, Dirichlet boundary conditions are specified along the lower and upper domain bound-
aries and no-flow boundary conditions are imposed elsewhere. The inverse of the matrix for the original
unstructured grid is non-monotone, but the pressure solution shows only minor oscillatory behavior. The
inverse coefficient matrix for the optimized grid is monotone and the computed pressure is free of spurious
oscillations. The grid obtained using only a single optimization cycle was also tested and was found to provide
a monotone inverse, demonstrating that the procedure need not be run to full convergence for this case.

The quality of the upscaling-grid optimization procedure is assessed by comparing the pressure solutions
obtained from the fine and coarse grids. The pressure surfaces in Fig. 15 show that the overall structure of
the fine scale pressure solution is preserved with reasonable accuracy on the coarse grid. The coarse model
does however lose some of the fine scale detail, as would be expected. Discrepancies between the two solutions
are most evident in regions of high $p. This is perhaps not surprising since the grid was formed to resolve high
flow regions rather than variations in pressure. In any event, the results in Fig. 15 demonstrate the viability of
the combined upscaling-grid optimization procedure.



Fig. 13. Original and optimized primal and dual grids (top row) and pressure surfaces and contours (bottom row) for Section 4.3.
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We note that the same model set-up was tested for anisotropy ratios up to 100/1. The inverse of the coef-
ficient matrix for all of the upscaled problems was monotone, while that obtained from the original grids was
non-monotone (though the resulting pressure fields showed relatively minor oscillations).

4.5. Three-dimensional corner to corner flow

This example illustrates the impact of grid optimization in R3. Several examples were tested, and in general
we observed that the oscillatory behavior of the pressure solution in three dimensions using the original grid
was not as strong as that observed in two dimensions. This may be because multiple interaction regions con-
tribute to a given connection and therefore, as discussed in Section 2.3, positive contributions in the coefficient
matrix are more likely to be offset by negative contributions from other connections. In the following, we pres-
ent an example for which the initial grid did lead to relatively strong non-physical effects.

The domain is the unit cube with an initial Cartesian grid point distribution of nx · ny · nz = 12 · 4 · 5.
Vertices away from the boundaries are perturbed by a maximum of ± one third of the grid point spacing



Fig. 14. log(k1) of fine scale permeability field and optimized dual grid for Section 4.4.

Fig. 15. Pressure surfaces for Section 4.4. The fine grid reference result is shown on the left and the result for the coarse grid is shown on
the right.

Table 3
Grid statistics for 3D example (see Section 4.5)

Dihedral angle range h Tetrahedra fraction

Original grid Optimized grid

0 < h 6 90 0.00 0.08
90 < h 6 120 0.11 0.42
120 < h 6 140 0.16 0.19
140 < h 6 160 0.34 0.19
160 < h 6 180 0.40 0.12
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in the respective coordinate direction. The permeability field is based on a tensor with k1:k2:k3 = 100:1:1 and
the tensor rotation angle defined by Eq. (37) after neglecting the randomization term. Table 3 summarizes the
statistics of the original and optimized primal grids. The table presents results for the largest dihedral angle for
each tetrahedron, computed in a computational space based on the average of the permeability tensors at the
four vertices. These results show that the algorithm is effective in reducing very high angles (recall that the
optimization seeks to minimize the maximum dihedral angle), although more grid optimization would be
desirable. The effect of the grid optimization on a single control volume and its underlying tetrahedrization
is shown in Fig. 16. The configurations are plotted in computational space and it is evident that the optimized
control volume is much less elongated than the original block. This occurs as a result of the reduction in the
maximum dihedral angles of the tetrahedrization.

The problem is solved subject to Dirichlet boundary conditions in the corners (0,0 ,z) and (1,1,z) applied
over the full model thickness and no-flow conditions specified elsewhere along the boundary. Because the grid
Fig. 16. A single control volume (top row) and its underlying tetrahedrization (bottom row) for Section 4.5 plotted in computational
space, viewed along the z-axis. Plots on the left show the configurations before and on the right after optimization.
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optimization does not guarantee satisfaction of Eq. (24), the inverse matrices for both the original and opti-
mized problem are non-monotone. Nonetheless, the benefit of the optimized grid is clearly evident in the pres-
sure solution. Specifically, using the original grid, 60 out of a total of 240 blocks show oscillations or exceed
the imposed boundary conditions. The solution on the optimized grid, by contrast, does not show any oscil-
lations or block pressures that exceed the boundary conditions.

As an alternative to the dihedral angle based optimization, an algorithm using a solid angle criterion was
also investigated for this problem. Although the algorithm led to an improved grid, measured in terms of dihe-
dral angles, it was not sufficient to eliminate the non-physical oscillations in the pressure solution.

5. Conclusions and possible extensions

The purpose of this paper was to develop and apply a grid optimization technique that eliminates the oscil-
latory behavior of solutions computed using multipoint flux approximations caused by strong anisotropy
ratios of the permeability tensors. In Section 2, the relation between monotonicity and grid geometry was
investigated and a criterion guaranteeing an M-matrix for three-dimensional problems was derived for the
homogeneous case. In Section 3, grid optimization techniques based on the application of topological oper-
ators and anisotropic triangulation were introduced for two- and three-dimensional grids. The key feature
of the underlying algorithm is its ability to account for variable anisotropy in the permeability field, as results
from permeability upscaling procedures. The grid generation techniques introduced here do not require any
modification of the underlying MPFA schemes.

The application of the method for improving the monotonicity performance of MPFA when solving elliptic
problems was demonstrated in Section 4. Convergence for the MPFA discretization on unstructured grids was
established numerically and examples illustrating the applicability of the technique for heterogeneous cases
were presented. A methodology that couples grid optimization and upscaling was also developed and applied.

A number of extensions of the grid optimization techniques presented in this paper would be of use. In
the current algorithms, efficient data structures for meshing were not of primary concern, so computational
efficiency issues must be addressed and appropriate data structures implemented. The extension of the grid
optimization through the introduction of geometric operators that add vertices and the application of local
grid smoothing to further improve the grid quality, both accounting for heterogeneity and anisotropy, would
also be useful. For three-dimensional grids, where our algorithm can only alleviate oscillations in the pressure
solutions, a more advanced triangulation or triangulation optimization technique accounting for a dihedral
angle criterion and variable anisotropy would be a major step forward. An algorithm that links upscaling
and grid optimization was presented in R2. A fast and accurate three-dimensional implementation of this
coupled procedure is currently under development.

Angular restrictions are common to many discretization schemes that are based on triangular meshes.
Therefore, the grid optimization technique introduced in this paper may prove useful for schemes other than
the MPFA method considered here. It is possible that a hybrid solution incorporating both a modified MPFA
stencil and grid optimization will provide a very general and robust overall methodology.
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